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INTRODUCTION 

THE FIRST attempts to study mixed convection in a porous 
layer were those of Wooding [I], Prats [2], Sutton [3]. and 
Homsy and Sherwood 141. The emohases in these studies. 
however, were on the stability of-the flow field and the 
establishment of the criterion for the onset of convection. 
Experimental results were very limited and were reported 
only by Combamous and Bia [5]. By using a boundary- 
layer formulation and the similarity method, Cheng [6, 71 
conducted a series of investigations to study mixed con- 
vection over vertical, inclined and horizontal plates in porous 
media. Recently, numerical results of mixed convection in 
vertical and horizontal porous layers with non-uniform 
heating on the boundary have been reported [8, 91, while 
experimental results have been reported only for the latter 
case [IO, 111. 

As a continuing effort toward a complete understanding 
of transport phenomena in porous media, we consider in 
this note the influence of surface mass transfer on mixed 
convection over horizontal plates in saturated porous media. 
The approach follows that used by Cheng and co-workers 
[12, 131 for the study of free convection. Similarity solu- 
tions are obtained for the special case where the surface 
temperature, free stream velocity and injection, or with- 
drawal, velocity are a prescribed power function of dis- 
tance. The limiting cases of free and forced convection are 
also examined. 

ANALYSIS 

Consider the problem of injection or withdrawal of fluid 
through the surface of a horizontal plate embedded in a 
saturated porous medium. Having invoked the Boussinesq 
and boundary-layer approximations, the governing equa- 
tions based on Darcy’s law are given by 

d2Y &B aT 
v=-y;j; (1) 

aYadT avaT d’T 
-----=a, 
ay a.x ax a, ay- (2) 

with boundary conditions 

?‘ = 0, r, = 7, +,4.u”, 1, = -g = ?,I, = ox” (3) 

sly 
u = - = 0, for free convection a) W 

= Cl, = BY", for mixed convection (4b) 

and a is positive for injection of fluid and negative for with- 
drawal of fluid.With the properly chosen similarity variables, 
equations (1) and (2) can be transformed to a set of ordinary 
differential equations. 

t Author to whom all correspondence should be addressed. 

Free and mixed conuection 
The suitable similarity variables are 

9 = (Ra)’ ‘f 

and 
Y = a(Ra) ’ ‘-f(q) 

T- T, 
O=-------. 

T, - Tz 

After transformation, the resulting equations are 

with boundary conditions given by 

9 = 0. 0 = 1, .f= VJ”, = c- ’ ‘[.f,lrnX 

r/-cc. t,=o, ,r=., 

where 

C = Pe”‘*lRa 

(3 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

is the parameter for mixed convection. It is clear that solu- 
tions with C = 0 correspond to free convection. In equation 
(lo), vJ.c is the mass flux parameter for free convection 

(13) 

and VJ,,,. is the mass flux parameter for mixed convection 

L/J,, = - 2u - (a&’ ‘(I +m) 

It is clear that .fw is positive for the withdrawal of fluid and 
negative for injection. 

For free convection, it has been shown that similarity 
solutions exist for the case of an impermeable plate [14]. i.e. 
[&I.. = 0, no injection or withdrawal of fluid. Similarly, it 
can be shown that equations (8) and (9) also perrnit similarity 
solutions if n = (A - 2)/3. However, as pointed out by Cheng 
and Chang [14], the solutions are physically realistic only 
when l/2 $ E. 4 2. For i, = l/2, this corresponds to the case 
of a plate heated with constant flux while for A = 2, it cor- 
responds to a constant suction or injection velocity on the 
surface. For the latter case, Minkowycz er al. (131 have 
presented a non-similarity analysis for a wide range of mass 
flux parameters and wall temperature distributions. The solu- 
tions for the first case, however. have not been reported 
before. 

For mixed convection. it is clear that equations (8) and 
(9) will permit similarity solutions if 1 = (3m+ I)/2 and 
n = (m- 1)/2. For /, = l/2, this corresponds to the case of a 
uniform Row over a horizontal plate heated with constant 
flux. For i = 2. it corresponds to a stagnation Row over a 
horizontal plate with constant suction or injection of fluid 
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NOMENCLATURE 

A constan’ defined in equation (3) u Darcy’s velocity in the .x-direction (m s- ‘1 
a constant defined in equation (3) F Darcy’s velocity in the 2t_direction [m s- ‘] 
B constant defined in equation (4b) 0, fluid injection or withdrawal velocity [m s’- ‘] 

C mixed convection parameter defined by X, y Cartesian coordinate [ml. 
equation (12) 

f dimensionless stream function defined by Greek symbols 
equations (6) and (16) thermal diffusivity of porous medium [m’ s- ‘1 

I, surface mass flux parameter defined by ; coefficient of thermal expansion li(- ‘1 
equations ( 13) and (14) V independent similarity variable 

z 
acceleration due to gravity [m s-*] VT dimensioniess thermal boundary-layer thickness 
local heat transfer coefficient w m-* K-‘1 e dimensionless temperature 

K ~~eabiIity [rnq 1 constant defined in equation (3) 
k effective thermal conductivity p m- ’ K-‘] kinematic viscosity of convective fluid [m2 s- ‘1 
111 constant defined in equation (4b) & stream function. 

;I4 
constant defined in equation (3) 
local Nusseh number, hx/k Subscripts 

P@ local Peclet number, U,x/a fc forced convection 
Ra modified local Rayleigh number, mx mixed convection 

WV,-- T,)xlva: nc natural convection 
T temperature [K] W condition at the wail 
u, free stream velocity in the x-direction [m s- ‘1 00 condition at infinity. 

Table 1. Selected values of -W(O), f(0) and qT for free convection over a 
horizontai plate in a saturated porous medium 

fw -6yO~ f(O) VT 

I= l/2 
-0.8 0.6835 1.3044 5.1691 
-0.4 0.7433 1.2190 4.9818 

0.0 0.8125 (0.8164)t 1.1330 4.7633 (5.0)? 
0.2 0.8510 1.0900 4.6386 
0.4 0.8923 1.0472 4.5073 
0.6 0.9366 1.0049 4.3751 
0.8 0.9839 0.9629 4.2253 
1.0 1.0344 0.9217 4.0761 

A-2 
-0.8 1.3853 (1.387)$ 1.7062 (1.708)x 4.5155 
-0.4 1.4688 (1.471) 1.5777 (1.579) 4.0574 

0.0 1.5702 (1.571) 1.4467 (1.447) 3.6719 (3.7)t 
0.2 1.6288 (1.629) 1.3803 (1.380) 3.4708 
0.4 1.6920 (1.692) 1.3124 (1.313) 3.2604 
0.6 1.7632 (1.763) 1.2453 (1.246) 3.0610 
0.8 1.8421 (1.842) 1.1787 (1.179) 2.8702 
1.0 f. .9298 (1.930) 1.1134 (1.113) 2.6886 

t Solutions presented by Minkowycz et al. [13]. 
$ Solutions presented by Cheng and Chang [14] for an impermeable plate. 

on the surface. For flow over an impermeable plate, 
i.e. vJmX = 0, the solutions have also been reported by 
Cheng [7]. 

Forced convection 
For the limiting case of forced convection, the appropriate 

similarity variables are 

q = (Pe)i/2Z 
x (15) 

Y = a(Pe) “2f(f& (16) 

Equations (I) and (2) are transformed to 

f=l (17) 

8” = A@_ !!+-*. 

RESULTS AND DISCUSSION 

The transformed ordinary differential equations, with the 
blinding boundary con~tio~, are solved by numerical 
integration using the fourth-order Runge-Kutta method and 
the shooting technique with a systematic guessing of 0’(O) 
and f’(0). Selective values of -6’(O) and f’(0) are listed 
in Table 1 for free convection, and in Table 2 for mixed 
convection. As an indication of proper fo~u~tion and 
accurate calculation. the results thus obtained have been 
compared with the data published earlier, and they show 
excellent agreement. 

The heat transfer coefficient in terms of Nusmlt number is 
given by 

$ = [-0+(O)], for free convection (19) 
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Table 2. Selected values of -O’(O), f’(0) and or for mixed convection over a horizontal plate in a saturated porous medium 

.f, = - 1 .f, = 0 .f, = 1 
- 

Ra/Pe’ ’ -B’(O) f’(0) VT --F(O) .f’(O) ‘IT Go, .f’(O, 71 

i= 11’2 
0 (fc) 0.6337 1.0 3.8245 0.8862 (0.8862)t 1.0 (l.OOOYt 3.2153 (3.2)t 1.2009 1.0 2.6934 
0.6 0.8037 1.5728 3.3938 1.0281 (1.028) 1.4740 (1.474) 2.9486 (2.9) 1.3123 1.3907 2.5428 
1.0 0.8862 1.8862 3.2154 1.1020 (1.102) 1.7474 (1.747) 2.8250 (2.8) 1.3745 1.6264 2.4624 
2.0 1.0450 2.5547 2.9088 1.2495 (1.249) 2.3479 (2.348) 2.6049 (2.6) 1.5041 2.1591 2.3115 
5.0 1.3575 4.1212 2.4379 1.5503 (1.550) 3.7996 (3.799) 2.2380 (2.2) 1.7825 3.4927 2.0347 
8.0 1.5724 5.3921 2.1953 1.7610 (1.761) 4.9990 (4.999) 2.0340 (2.0) 1.9836 4.6181 1.8688 

15.0 1.9290 7.8493 1.8704 2.1137 (2.113) 7.3444 (7.345) 1.7535 (1.7) 2.3261 6.8498 1.6377 

E. = 2 
0 (fc) 1.1258 1.0 2.5646 1.5957 (1.595)7 1.0 (l.OOO)t 2.0472 (2.0)t 2.2117 1.0 1.6378 
0.6 1.4652 1.7240 2.3195 1.8627 (1.863) 1.5778 (1.578) 1.9175 (1.9) 2.4064 1.4579 1.5730 
1.0 1.6309 2.1235 2.2138 2.0044 (2.004) 1.9159 (1.916) 1.8532 (1.8) 2.5182 1.7391 1.5371 
2.0 1.9494 2.9781 2.0284 2.2889 (2.291) 2.6630 (2.666) 1.7334 (1.7) 2.7514 2.3852 1.4656 
5.0 2.5716 4.9815 1.7304 2.8820 (2.879) 4.4981 (4.495) 1.5188 (1.5) 3.2827 4.0268 1.3230 
8.0 2.9971 6.6069 1.5729 3.2927 (3.292) 6.0105 (6.010) 1.3954 (1.3) 3.6683 5.4273 1.2327 

15.0 3.6971 9.7429 1.3504 3.9142 (3.982) 8.9644 (8.980) 1.2306 (1.2) 4.3308 8.2232 1.1000 

t Solutions presented by Cheng [A for impermeable surfaces in saturated porous media. 

z = [ - O’(0)lm. for mixed convection (20a) 

= [ - 19’(0)]~~ for forced convection. (20b) 

For free convection, it is clearly observed that the intro- 
duction of surface mass transfer has a significant influence 
on the heat transfer results (Fig. 1). While the withdrawal of 
fluid from the surface has greatly enhanced the heat transfer 
rate, the injection of fluid has considerably decreased it. 

For mixed convection, the heat transfer result is plotted 
in Fig. 2 as a function of fy and Ra/Pe”‘. The limiting cases 
of free and forced convection are also shown as asymptotes 
in the same figure. The influence of surface mass flux on 
mixed convection is clearly observed from these figures. As 
is the case for free convection, the heat transfer rate increases 
with the mass flux parameter, fw, i.e. enhancement for suction 
and reduction for injection. 

For the case of impermeable surfaces, i.e. UJ,,,, = 0, the 
free convection asymptotes are linear and are given by 

$=0.8125 $ 
[ 1 

I/3 
for I = l/2 

“’ = 1.5702 [ 2 1 for 1 = 2. (21) 

(b) 

FIG. 1. Effects of surface mass flux on heat transfer results FIG. 2. Effects of surface mass flux on heat transfer results 
for free convection over a horizontal plate in a saturated for mixed convection over a horizontal plate in a saturated 

porous medium. porous medium. 

For u&, # 0, the corresponding free convection asymp- 
totes can be obtained by rewriting equation (20) as 

= c-’ ‘[-F(o)]“< (22) 

-.--Forced Convection Asymptote 
------Free Convection Asymptote 

mm] 
------Free Convection Asymptote 
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and applying the relation between VW],, and If,],. as given 
by equation (10). 

With a given VZ],,,. and C, &]., can be determined through 
equation (10). Once v&e is specified, [-O’(0)lnc can be 
solved from equations (8) and (9). Therefore, the free con- 
vection asymptote is obtained, from equation (22), for each 
corresponding u&,.. 

To summarize, the influence of surface mass transfer on 
mixed convection over horizontal plates in saturated porous 
media has been studied analytically. Similarity solutions have 
been reported for the special cases for which the wall tem- 
perature, free stream velocity and injection or withdrawal 
velocity are a prescribed power function of distance. It is 
found that the heat transfer, in the form of free, mixed or 
forced convection, is enhanced by the withdrawal of fluid 
from the surface while it is decreased by the injection of fluid. 
Problems of this kind may be encountered frequently in 
the geophysical and geothermal applications. Solutions thus 
obtained, although applicable only to the injection and with- 
drawal of the same species, provide useful information when 
surface mass transfer due to chemical reactions has to be 
considered. 
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1. INTRODUCTION 

IN A PREWOUS paper [I], the accuracy of several radiation 
models for three-dimensional radiative heat transfer have 
been assessed by applying these models to the prediction of 
the distributions of radiative flux density and the radiative 
energy source term of a rectangular enclosure problem and 
by comparing these predictions with exact solutions [2]. 

A significant number of industrial furnaces and com- 
bustors are cylindrical in shape. Therefore, it is considered 
necessary to evaluate the radiation models produced earlier 
for cylindrical furnaces by applying them to the prediction 
of radiative flux density and source term distributions of a 
cylindrical enclosure problem based on data reported pre- 
viously on a pilot-scale experimental furnace [3] and by 
comparing their predictions with exact values reported pre- 
viously [4]. 

The radiation model to be tested is the spherical harmonics 
approximation derived for an axisymmetrical radiation field 
[5]. In this model the angular variation of intensity at a point 
is expressed by a series of spherical harmonics. By using the 

P, approximation (in which the series is truncated after the 
first four terms) and the equation of radiative transfer, the 
axisymmetrical radiation field within a grey, non-scattering 
medium is represented by three partial differential equations 
in the total incident flux density and the net radiant flux 
densities in the positive coordinate directions (61. 

This model had previously been reduced to two-flux form 
and applied to the prediction of the behaviour of large- 
scale experimental furnaces and predicted temperature and 
radiative flux density distributions had been compared with 
experimentally determined data [6. 71. However, it has been 
found impossible to decide whether discrepancies between 
predictions and measurements are attributable directly to the 
radiation model employed or to inaccuracies in the sub- 
models used for the prediction of flow, reaction. etc. 

The use of exact solutions for testing purposes provides a 
means for assessing the accuracy of predictions of a radiation 
model in isolation from the models of flow and reaction. 

In this paper. therefore, the accuracy of the P, spherical 
harmonics approximation is tested by applying it to the 
prediction of the distributions of the radiative flux density 


